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Abstract
In this thesis, we use continuous-time coupled stochastic diffusion models to model the interbank
market for liquid reserves. The coupled dynamics allow us to capture the interconnectedness of
banks in the banking system, which allows us to model feedback and amplification channels between
banks in a continuous manner. We study the collective behaviour of banks and systemic risk, which
is defined as the risk that many banks fail simultaneously, leading to a failure in the system as a
whole. We find that even in our relatively simple model, small changes in the parameters of the
model can have a material impact on the probability of a systemic event occurring.

Our contribution to the literature is to analyse the impact of different interbank network structures
on systemic risk. We find that the optimal interbank network depends on the composition of the
banks in the interbank market. We present a wide range of numerical results to illustrate the impact
of model parameters, modelling features and network effects on the stability of the banking system.
Finally, we develop deep learning methods for solving more analytically challenging problems, such
as an interbank game, where banks can control their rate of borrowing and lending to a central bank,
and a network inference problem, where we aim to infer the network structure of the financial system
from observing the dynamics of the system. We find that deep learning methods are a promising
approach for solving these high-dimensional problems.
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Chapter 1

Introduction

Maintaining financial stability is an important objective of any central bank. A stable financial
system is able to absorb economic shocks and prevent adverse events from disrupting the economy
and spreading to other financial systems. Failures in the financial system can have a very negative
impact on the economy and on the welfare of individuals. This was most notable in the 2007-2008
financial crisis, where a shock in the form of a collapsing housing bubble in the US resulted in the
collapse of key financial institutions. Since the crisis, central banks have put increasing focus on
understanding and reducing systemic risk in the financial system, and in particular, the banking
sector. Recent failures in banks like Silicon Valley Bank in 2023 has shown that the banking
system is still vulnerable to shocks, and that it is still important to implement policy to safeguard
the financial system.

In 2013, Janet Yellen, Vice Chair of the Board of Governors of the Federal Reserve System gave a
speech to highlight the importance of interconnectedness and systemic risk. In her speech, Yellen
(2013) mentioned that the increased vulnerabilities in the financial system were consequences of
the increasing complexity and interconnectedness of aspects of the financial system. She also cited
many academic papers which study contagion and systemic risk in networks of interlinked financial
institutions such as Cont et al. (2013), who develop a bank-based model for interbank lending
and argue that capital requirements should not be uniformly applied across banks, but rather be
targeted at systemically important institutions. Yellen’s speech suggested that policymakers should
carefully consider the role of the interconnectedness of banks when designing policy to safeguard
the financial system.

The Bank of England is the central bank of the United Kingdom, and is responsible for maintaining
financial stability in the UK. As part of maintaining financial stability, the Bank regularly stress
tests UK Banks to assess their resilience to adverse economic shocks. In these stress tests, the Bank
calibrates a severe macroeconomic scenario that represents a tail risk to the financial system, which
is then run through a suite of models to assess its potential impact on the resilience of the banking
system. The Bank uses the results of the stress tests to design policy to safeguard the financial
system.

The models used in these stress tests are typically partial equilibrium models applied to individ-
ual banks, and the impact of feedback and amplification channels between banks are estimated
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separately and layered on top of the initial model results. Feedback and amplification channels
describe the impact of a change in the financial position of one bank on the financial position of
other banks. For example, if a bank defaults on its obligations to other banks, this can cause other
banks to default on their obligations to other banks, which can lead to a cascade of defaults in the
financial system. This approach of separately estimating the impact of feedback and amplification
channels, rather than incorporating it into the primary models, is mainly due to the complexity
of building a granular, general equilibrium stress testing model that can incorporate these effects
while modelling how banks’ balance sheets evolve over time given a macroeconomic scenario.

We investigate the use of interacting particle models to model the banking system and systemic
risk, which is the risk that many banks fail simultaneously, leading to a failure in the system as a
whole. Interacting particle systems have seen use in various disciplines, such as the Ising model to
model ferromagnetism in statistical physics, the voter model to model opinion formation in social
sciences, and the Kuramoto model to model synchronisation. The advantage of using interacting
particle systems is that they are simple enough to be tractable, yet complex enough to exhibit
interesting dynamics. In general, it is difficult to obtain analytical results for interacting particle
systems, so numerical methods are often used to analyse the dynamics of the system. Fortunately,
it can be quite straightforward to simulate interacting particle systems to obtain numerical results.

In our model, the dynamics of bank reserves are modelled by continuous-time coupled stochastic
differential equations. The coupling in the dynamics allows us to model the interconnectedness
of banks, which allows us to model feedback and amplification channels between banks. We also
consider the impact of several extensions to the model with policy implications in mind, such as
analysing the impact of interbank network structures, aggregate uncertainty, or the inclusion of a
central bank into the interbank market on the stability of the banking system.

Additionally, we consider the problem of inferring the network structure of an interacting particle
system from observing its dynamics. We develop a deep learning method to estimate the network
structure of the financial system, with policy applications in mind. For example, the Bank of
England is interested in understanding the role of non-banks in the financial system, such as hedge
funds and insurance companies. These companies are not required to report their balance sheets
to the Bank, so the Bank has limited information on the financial position of these companies. Our
method can help determine the underlying network structure of non-banks in the financial system.

Thesis outline
Our thesis is structured as follows. We conduct a literature review in chapters 2 and 3 of two
important models for systemic risk that are presented in Fang et al. (2017) and Garnier et al. (2013).
Chapter 2 introduces the simple model of systemic risk used in Fang et al. (2017) and reproduces
and summarises the paper’s key results. In this chapter, we also consider the impact of including
common and multiplicative noise on the stability of the banking system. Chapter 3 reproduces
and summarises the model presented in Garnier et al. (2013), which is a bistable model of systemic
risk. In this model, banks can be in one of two states; a normal state and a failed state, and the
banks transition between the two states. In chapter 4, we extend the simple model from chapter 2
to include different interbank network structures. We analyse the impact of common networks on
systemic risk such as the star network and random networks. Additionally, we explore the impact
of time-varying networks by providing numerical results on the impact of network homophily and
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heterophily, as well as an exit system on the stability of the banking system. In chapter 5, we
extend the model in chapter 2 to an interbank game as described in Carmona et al. (2015), where
we include a central bank in the interbank market. Banks now control their rate of borrowing and
lending to the central bank. We develop a deep learning method to estimate the optimal controls
in this interbank game. We use this method to analyse whether the introduction of a central bank
increases the stability of the financial system. Chapter 6 describes a network inference problem,
where we aim to infer the network structure of the financial system from observing the dynamics of
the system. We develop a deep learning method to estimate the network structure of the financial
system. Finally, chapter 7 concludes the thesis and discusses the policy implications of our analysis,
and future work. Appendix A covers some preliminary mathematical background such as the theory
of stochastic processes, graph theory and neural networks. In the appendix, we included a link to
our code for our algorithms that use neural networks. Appendix B covers some additional results
that were not included in the main body of the thesis.
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Chapter 2

Interbank reserve model

2.1 Introduction
We start by considering a simple interbank model of mean-field interacting diffusions to model
systemic risk. Let N denote the number of banks and Xi

t ∈ R denote the log-monetary reserves
of bank i at time t ∈ [0, T ]. For i = 1, . . . , N , the dynamics of each bank solve the stochastic
differential equation given in differential form by:

dXi
t = µi(X̄t −Xi

t) dt+ σi dW i
t , Xi

0 = 0, t ∈ [0, T ], (2.1)

where W i
t are independent, standard Brownian motions. We define X̄t to be the empirical mean of

the log-monetary reserves in the system at time t, given by:

X̄t :=
1

N

N∑
i=1

Xi
t .

Equation (2.1) is one of the simplest continuous-time models for a banking system, yet the model
is complex enough such that it exhibits interesting dynamics. The model is a system of N coupled
stochastic differential equations, where each bank’s dynamics are coupled through the empirical
mean. In our model, we use the empirical mean as a measure of the overall health of the financial
system. If the empirical mean is high, then the financial system is healthy and if the empirical mean
is low, then the financial system is unhealthy. We use the empirical mean to measure systemic risk.
If the empirical mean falls below a default level, then we say that the whole banking system has
failed.

The dynamics given in eq. (2.1) imply that the monetary reserves for bank i are mean reverting.
The economic interpretation of this is that if bank i has more reserves than the empirical mean, then
reserves flow from bank i to other banks through interbank lending proportional to the difference
Xi

t − X̄t, while if bank i has fewer reserves than the empirical mean, then reserves flow from other
banks to bank i. The random Brownian motion term W i

t represents exogenous shocks to each
bank’s monetary reserves that occur continuously. The parameter µi > 0 represents the strength
of the mean reversion, and σi controls the volatility for bank i’s level of reserves. The case where
µi = µ and σi = σ corresponds to homogeneous case, where all banks have identical coefficients.
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Let η < 0 denote the default level. We interpret the event that Xi
t ≤ η as bankruptcy for bank i at

time t ∈ [0, T ], whereby the bank defaults. In our simple model, we assume that defaulted banks
remain in the banking system, and continue to interact with other banks. This is a simplifying
assumption, as in reality, defaulted banks are likely to be removed from the banking system. We
explore relaxing this assumption in chapter 4.

To measure the stability of the financial system, we use Monte Carlo methods to estimate the loss
distribution, which is the probability distribution of the number of banks that default within the
time interval [0, T ] by:

P̂(Ndef = n) =
1

Nsim

Nsim∑
j=1

I{Nj
def=n},

where N j
def denotes the number of banks that defaulted within the time interval [0, T ] for simulation

j, and Nsim denotes the number of simulations used to estimate the probability distribution.

For a fixed default level η, we define A to be the default event, defined as the event that the banking
system fails as a whole, given by:

A :=

{
min

0≤t≤T

1

N

N∑
i

Xi
t ≤ η

}
.

We estimate the probability of the default event using Monte Carlo methods by:

P̂(A) =
1

Nsim

Nsim∑
j=1

I{Aj}.

Unless otherwise stated, we estimate loss distributions and the probability of the default event
using Nsim = 5000 simulations.

Figure 2.1 shows an example of the simulated dynamics of the system. The left graph shows
the trajectory of the banks’ reserves over the time interval [0, 1], simulated from the dynamics
given in eq. (2.1) with N = 10 homogeneous banks with µ = 1 and σ = 1. The red line is the
default level η = −0.7, while the green line is the trajectory of the empirical mean, X̄t. For this
particular simulation, the empirical mean falls the default level, so the banking system has failed.
The right graph shows the estimated loss distribution. In the homogeneous case, the distribution
is approximately normal, with the modal number of defaults being five banks. The probability of
the banking system failing is estimated to be 3%.

Fang et al. (2017) study how the stability of the banking system, as measured by the loss distribu-
tions and the probability of the default event occurring are affected by the structure of the banking
system. That is, how different combinations of the parameters (N,µi, σi) affect the stability of the
banking system.

2.1.1 Heterogeneous banks - differing µi and σi

Fang et al. (2017) give examples of how the stability of the banking system can be affected in a
large way depending on the structure of the banking system. They consider two banking structures
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Figure 2.1: The left graph shows the trajectory of banks’ reserves for the homogeneous case. The
right graph shows the estimated loss distribution.

for the banking system with N = 10 banks, given by:

Group A :
{
(µ, σ){1,2}, (µ, σ){3,4,5,6,7}, (µ, σ){8,9,10}

}
= {(1, 2), (10, 1), (100, 0.5)}

Group B :
{
(µ, σ){1,2}, (µ, σ){3,4,5,6,7}, (µ, σ){8,9,10}

}
= {(1, 0.5), (10, 1), (100, 2)}

(2.2)

Group A and B have the same parameters N and µi, but differing values for σi. In group A,
banks with small coefficients for µi have large coefficients for σi, while in group B, banks with small
coefficients for µi have small coefficients for σi. The ratio of banks with differing values of (µi, σi)
is 2:5:3.

Figures 2.2 and 2.3 show the trajectory of the banks’ reserves over the time interval [0, 1] and the
estimated loss distributions for group A and B. From the sample paths, we can see that some banks
do not closely follow the mean. These correspond to the banks with small coefficients µi. For group
A, these banks have a large volatility parameter σ, so large fluctuations in their reserves have a
large impact on the empirical mean, which affects the reserve levels of other banks. As other banks
with larger values for µi follow the average level of reserves more closely, these banks with small
values for µ but large values for σ have a large impact on the stability of the banking system. The
estimated loss distribution for group A is bimodal, with the most likely events being one bank or
all ten banks defaulting. We estimate that the probability of the default event occurring is 30%,
which is much higher than the homogeneous case. For group B, the banks with small values for µ
also have small values for σ. This means that these banks have a smaller impact on the empirical
mean and thereby the stability of the banking system. The estimated loss distribution for group B
is much more positively skewed, with the modal number of bank defaults being zero. We estimate
the probability of the banking system failing to be 2%. This shows that the composition of the
banking structure has a large impact on the stability on the financial system.

Fang et al. (2017) also explore the impact of changing the ratio of banks in the groups given in
eq. (2.2). They consider three cases, where the ratio of banks within groups A and B given in
eq. (2.2) are 8:1:1, 1:8:1 and 1:1:8 instead of 2:5:3. Figures 2.4 and 2.5 show the estimated loss
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Figure 2.2: The trajectory of banks’ reserves and estimated loss distribution for group A.

Figure 2.3: The trajectory of banks’ reserves and estimated loss distribution for group B.

distributions for these three cases for groups A and B. We see that the estimated loss distributions
are most severe when the ratio of agents is 1:1:8, which corresponds to the case where the majority of
banks have large coefficients for µi. For group A, the probabilities of the banking system failing for
the three cases are estimated to be 28%, 24% and 45%, respectively. For group B, the probabilities
of the banking system failing for the three cases are estimated to be 0%, 2% and 12%, respectively.
The probability of the banking system failing is highest when the number of banks with large
coefficients for µi is large. These results imply that from a policy perspective, it may be desirable
to prevent the formation of groups of larger banks that dominate the interbank market, as these
banks have a large impact on the stability of the banking system and can become systemic banks,
meaning that their failure can cause the failure of the whole banking system.
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Figure 2.4: Loss distributions for group A when the ratio of banks is 8:1:1, 1:8:1 and 1:1:8.

Figure 2.5: Loss distributions for group B when the ratio of banks is 8:1:1, 1:8:1 and 1:1:8.

2.1.2 Asymptotic probability of the default event

Finally, we investigate the probability of the default event occurring as the number of banks in-
creases to infinity. Fang et al. (2017) use the theory of large deviations for Gaussian random
variables to derive the asymptotic probability of the default event in the limit as N → ∞, and
show that the probability is of the order of e−η2N/

(
2V 2

T

)
, where V 2

T depends explicitly on µi and
σi. We omit the derivations from Fang et al. (2017) and instead rely on Monte Carlo methods to
estimate the asymptotic probability of the default event. We compute the probability of the default
event occurring for increasing values of N , from N = 10 banks to N = 300 banks. For each value
of N , we use Nsim = 500 simulations to estimate the probability of the default event. Figure 2.6
shows the estimated probabilities of defaulting for group A when the ratio of banks is 8:1:1 and
1:1:8 for different values of N . We see that the probability of the default event occurring decreases
as N increases, which is consistent with the results from Fang et al. (2017). This implies that the
banking system is more stable when the number of banks participating in the interbank market
is high. From a policy perspective, it may then be desirable to ensure that the banking system is
competitive with the banking structure consisting of many banks rather than a few banks. We also
see that the asymptotic probability of the default event occurring is higher when the ratio of banks
is 1:1:8, which is consistent with the results from figs. 2.4 and 2.5.

2.2 Common noise
One interesting extension of the model is to consider what happens when the noise is correlated.
We extend the model from eq. (2.1) to include a common source of noise. The dynamics for the
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Figure 2.6: Probability of the default event occurring for group A when the ratio of banks is 8:1:1
and 1:1:8, for different values of N .

log-monetary reserve for each bank is given by:

dXi
t = µi(X̄t −Xi

t) dt+ σi dW̃ i
t , Xi

0 = 0, t ∈ [0, T ], (2.3)

where dW̃ i
t := ρ dW 0

t +
√
1− ρ2 dW i

t , with W i denoting the individual noises, W 0 the common
noise and 0 ≤ ρ ≤ 1. The parameter ρ describes the noise correlation between the banks. The
economic interpretation of common noise is aggregate uncertainty in the interbank market, such
as a deterioration in the macroeconomic environment, which can cause all banks to experience a
shock to their reserves simultaneously.

We analyse the impact of including common noise on the stability of the banking system by varying
the magnitude of the noise correlation coefficient ρ. We consider the homogeneous case with µi = µ
and σi = σ and parameterise the model with N = 10 banks, µ = 1 and σ = 1. Figure 2.7 shows
the estimated loss distributions for the model with common noise for ρ = {0.2, 0.4, 0.6, 0.8}.

We find that increasing the value of ρ increases the probability of the default event occurring.
The estimated probabilities of the default event occurring are 5%, 16%, 27% and 39% for ρ =
{0.2, 0.4, 0.6, 0.8}, respectively. As ρ increases, the loss distributions become less normal. For
large values of ρ such as ρ = 0.8, the loss distribution becomes bimodal, with the most likely
events occurring being no banks defaulting or all banks defaulting. This is because when the noise
correlation coefficient is high, the trajectory of banks’ reserves become more correlated, so banks
are more likely to default together, or not at all. These results suggest that including common noise
has a large destabilising effect on the banking system. These results are also robust to changes in
the parameters N , µi and σi.

2.3 Multiplicative noise
We consider a model of interbank lending with multiplicative noise similar to Giesecke et al. (2020)
and Fouque and Sun (2013). We consider a dynamical system of the form:

dXi
t = µ(X̄t −Xi

t) dt+ b(t,Xi
t) dW i

t , Xi
0 = x, t ∈ [0, T ], (2.4)
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Figure 2.7: Loss distributions for the interbank model with common noise.

for some Borel function b : [0, T ] × R+ → R+. In this model, Xi
t > 0 denotes the level of reserves

of bank i. To start with, we consider the model with b(t,Xi
t) = σ

√
Xi

t , and compare the results to
the model without multiplicative noise with b(t,Xi

t) = σ. We parameterise the model by setting
µ = 1, σ = 10, X0 = 100 and we set the default level η = 50, which can be interpreted as a
minimum reserve requirement set by the regulator. Fouque and Sun (2013) prove requirements on
the parameters of the model such that the lower bound Xi

t = 0 is reach with probability zero over
an infinite time horizon. We do not strictly follow these requirements, but set the parameters in
such a way such that in practice, the lower bound on the level of reserves Xi

t = 0 is never reached
when simulating over the finite time horizon [0, 1].

Figure 2.8 shows the sample paths and the estimated loss distributions for the interbank model
with and without multiplicative noise. We can see that the sample paths are more volatile for the
model with multiplicative noise. Furthermore, the average number of banks that default is higher
for the model with multiplicative noise, with the loss distribution for the model with multiplicative
noise being approximately normal. The increase in the number of bank defaults is because with
multiplicative noise, the noise term is proportional to the level of reserves of each bank, which has
the effect of greater noise in the banking system. This increases the volatility of bank reserves,
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Figure 2.8: Loss distributions for the interbank model with and without multiplicative noise.

thereby making it more likely for banks to default. The estimated probabilities of the default event
are 0% for the model without multiplicative noise, and 1% for the model with multiplicative noise.
The difference between the probability of the default event is small, so the impact of multiplicative
noise on the default event is small. This is because of the asymmetrical impact of multiplicative
noise on the level of bank reserves. Banks with higher levels of reserves experience higher levels of
noise, and the level of banks’ reserves is unbounded from above. This has a positive impact on the
empirical mean which counteracts the increased volatility in the banking system, so the probability
of the default event occurring is not greatly affected.

Next, we consider the case where we also have multiplicative common noise. We consider a dynam-
ical system of the form:

dXi
t = µ(X̄t −Xi

t) dt+ σ

(
ρ(Xi

t)
γ dW 0

t +
√
1− ρ2

√
Xi

t dW i
t

)
, Xi

0 = 100, t ∈ [0, T ], (2.5)

where 0 ≤ ρ ≤ 1 is a scalar and 0 ≤ γ < 1 is the degree of the multiplicative common noise. The
upper bound γ < 1 is to ensure that Xi

t does not blow up in finite time. We find that varying the
degree of the multiplicative common noise parameter can have large implications on the stability
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Figure 2.9: Loss distributions for the interbank model with γ = 0.5 and γ = 0.75 for the model
with multiplicative common noise.

of the banking system. We consider two cases when γ = 0.5 and γ = 0.75. The rest of the model
is parameterised as before, and we set the common noise parameter ρ = 0.5.

Figure 2.9 shows the loss distributions for the model with γ = 0.5 and γ = 0.75. We see that the loss
distributions are much more severe for the model with the larger degree of multiplicative common
noise. The estimated probabilities of the default event are 18% for the model with γ = 0.5 and
65% for the model with γ = 0.75. Increasing the degree of multiplicative common noise increases
the volatility of the empirical mean. Combining this effect with the increased flocking behaviour of
banks due to the common noise, where banks tend to follow the empirical mean more closely, this
has the effect of increasing the probability of the default event occurring. These results suggest that
the degree of multiplicative common noise can have a large impact on the stability of the banking
system.

16



Chapter 3

Bistable systemic risk model

3.1 Introduction
Garnier et al. (2013) considers a model of interacting banks, where each bank can be in one of two
states; a normal and failed, and banks transition between the two states. The model from eq. (2.1)
is extended to include a bistable-state structure. Let Xi

t ∈ R denote the state of risk of bank i at
time t. The dynamics of each bank are assumed to have an intrinsic stabilisation mechanism that
keeps banks near a normal state. For i = 1, . . . , N , the dynamics of each bank are given by:

dXi
t =

(
−hU(Xi

t) + µi

(
X̄t −Xi

t

))
dt+ σi dW i

t , Xi
0 = −1, t ∈ [0, T ], (3.1)

The difference between the dynamics in eqs. (2.1) and (3.1) is the inclusion of the restoring force
U(x) = V ′(x), and the initial condition. V is a potential which is assumed to have two stable
states, which are approximately ±1, where −1 is the normal state and +1 the failed state. Banks
are assumed to start in the normal state and can transition between the normal and failed state.
The parameter h > 0 controls the level of intrinsic stabilisation. The economic interpretation of
h is that it represents the cost of implementing risk management to counteract external risk. The
parameter µi > 0 represents the strength of the mean reversion, which can be interpreted as the
rate of diversifying risk through cooperation with other banks. We assume that the cost to banks to
reduce their risk by improving their risk management practices by increasing h is much higher than
the cost of further diversifying their risk by increasing µi. Therefore, we assume that h < µi. The
noise term σ dW i

t represents exogenous shocks to each bank’s risk state that occurs continuously.
These shocks can cause banks to transition between the normal and failed state if the size of the
shock is large enough.

We assume that V (x) = 1
4x

4− 1
2x

2, so that V has two stable states at x∗± 1. Figure 3.1 shows the
potential and restoring force. Notice that the restoring force is such that in the neighbourhood of
each stable state, −U(x) > 0 for x < x∗ and −U(x) < 0 for x > x∗. This means that x → x∗ in
the neighbourhood of x∗, so x∗ is a stable state.

We are interested in studying the stability of the banking system through the empirical mean X̄t,
which is taken to be the measure of systemic risk. The parameters of the model are (N,h, µ, σ).
For the homogeneous case where µi = µ and σi = σ, Garnier et al. (2013) find that there exists a

17



−1.5 −1 −0.5 0 0.5 1 1.5

−0.2

−0.1

0

0.1

x

V (x)

−1 −0.5 0 0.5 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

U(x)

Figure 3.1: The potential V (x) = 1
4x

4 − 1
2x

2 with stable states at x = ±1 and the restoring force
U(x) = V ′(x) = x3 − x.

critical value of the volatility parameter, σc(h, µ) such that for σ ≥ σc, the empirical mean has only
one stable state at x∗ = 0. This is because when the volatility parameter is large, the dynamical
system in eq. (3.1) behaves like N independent Brownian motions, so half of the banks are in
the normal state and half of the banks are in the failed state, so the empirical is around zero.
For σ < σc, the empirical mean has two stable states at around ±1. This is because when the
volatility parameter is small, the dynamical system in eq. (3.1) behaves like N coupled Brownian
motions, and the empirical mean is attracted to one of the stable states. Garnier et al. (2013) derive
an approximation of the critical value of the volatility parameter for small h. The derivations are
omitted here and instead, we simply note the existence of a critical value for the volatility parameter,
and that the number of stable states depends on the relative value of the volatility parameter and
the critical value. As we want to model systemic risk, we focus our attention on the case with two
stable equilibrium states in order to analyse the rate of transitions of the empirical mean between
the normal and failed states.

Figure 3.2 shows examples of the sample path of the empirical mean for the bistable model with
σ < σc and σ ≥ σc. We parameterise both models N = 100 banks, h = 0.1 and µ = 6. The dynamics
in eq. (3.1) are simulated using the Euler-Maruyama scheme over the time interval [0, 10000] with
∆t = 0.02. The time horizon is longer to allow more time for the empirical mean to fluctuate
between the states, as these phase shifts may occur infrequently. The critical value for the volatility
parameter in this model is between one and two. For the model with σ = 1, we have σ < σc, so
the model has two stable states and the empirical mean oscillates between the normal state and
the failed state, as shown by the dashed red lines. The financial system is stable if the empirical
mean stays in the normal state and the probability of transitioning to the failed state is low. For
the model with σ = 2, we have σ > σc, so the model has one stable state at x∗ = 0 as indicated by
the dashed red line.
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Figure 3.2: Sample paths of the empirical mean for the bistable model with σ < σc and σ ≥ σc.

Figure 3.3: Sample paths of the empirical mean for the bistable model for different values of h.

3.2 Impact of model parameters on systemic risk
Garnier et al. (2013) explore the impact of alternative calibrations of the parameters h, µ, σ and
N on systemic risk and the stability of the banking system. For the bistable interbank model, we
define the banking system to be stable if the empirical mean does not fluctuate much between the
normal and failed state. We reproduce and present some of these results and compare them with
the model from chapter 2.

3.2.1 Varying h

Figure 3.3 shows the sample paths of the empirical mean for the bistable model for h = {0.02, 0.1, 0.5}.
We can see that increasing h increases the stability of the banking system, as the empirical mean
fluctuates less between the normal and failed states. This is intuitive as the parameter h controls
the strength of the stabilisation mechanism, so increasing h increases the strength of the stabilisa-
tion mechanism, which increases the stability of the banking system. Note that while increasing
h increases the stability of the banking system, it also increases the time taken for the empirical
mean to transition between the normal and failed states. This means that the impact of a systemic
event occurring can have a greater impact on the banking system as it spends more time in the
failed state.
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Figure 3.4: Sample paths of the empirical mean for the bistable model for different values of N .

3.2.2 Varying N

Figure 3.4 shows the sample paths of the empirical mean for the bistable model for N = {40, 80, 120}.
Increasing N has a similar effect to increasing h in that it increases the stability of the banking
system, as the empirical mean fluctuates less often between the normal and failed states. This is
consistent with the results from chapter 2, where we found that increasing the number of banks
increases the stability of the banking system.

3.2.3 Increasing diversity

The above results of increasing N or h resulting in an increase in the stability of the banking system
also hold for different banking structures, namely banks having different values of the rate of mean-
reversion µi. We now explore the impact of increasing the diversity of the banking structure. We
allow banks to have different preferences on their rate of risk diversification, µi. We assume µi can
take three distinct positive values from M := {M1,M2,M3}, and we let ρ denote the proportion
of banks with different mean-reversion parameters. We consider how increasing the heterogeneity
of banks with different µi affects the stability of the banking system. Figure 3.5 shows the sample
paths of the empirical mean for the bistable model for the three cases:

1. M = 10,

2. M = {6, 10, 14} with ρ = {0.33, 0.34, 0.33},

3. M = {2, 10, 18} with ρ = {0.33, 0.34, 0.33}.

The mean value for µ remains the same for all three cases, but the diversity of cooperation in the
banking structure increases as we move from case one to case three. We can see that increasing the
diversity of cooperation in the banking structure decreases the stability of the banking system, as
the empirical mean fluctuates more often between the normal and failed states.

We also consider how altering the ratio of banks with differing values of µ affects the stability of the
banking system. Figure 3.6 shows the sample paths of the empirical mean for the bistable model
for M = {5, 10, 15}, and we consider two cases where ρ = {0.1, 0.8, 0.1} and ρ = {0.33, 0.34, 0.33}.
The second case has the more diverse banking structure, but the banking system is less stable as
the empirical mean fluctuates more often between the normal and failed states. We conclude that
increasing diversity of cooperation in the banking structure decreases its stability. One rationale
for this result is that banks with different preferences for risk diversification will diversify their risk
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Figure 3.5: Sample paths of empirical mean for the bistable model for different values of M .

Figure 3.6: Sample paths of empirical mean for the bistable model for different values of ρ.

at different rates, which enhances the fluctuation of the empirical mean, resulting in a less stable
banking system.

3.3 Summary
Garnier et al. (2013) considered an interbank model for systemic risk that extends from the model
in chapter 2 by including a restoring force, which creates a bistable-state structure. The model is
parameterised by (N,h, µ, σ), where N is the number of banks, h is the strength of the stabilisation
mechanism, µ is the rate of risk diversification and σ is the volatility parameter. When σ is small,
the model has two stable states at around ±1, and the empirical mean is taken to be the measure
of systemic risk. The model is stable if the empirical mean stays in the normal state and the
probability of transitioning to the failed state is low. Garnier et al. (2013) found that increasing h
or N increases the stability of the banking system, while increasing the diversity of cooperation in
the banking structure decreases the stability of the banking system.
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Chapter 4

Network structure model

4.1 Introduction
In the simple model given by eq. (2.1), the dynamics of the banks implied that we had all-to-all
coupling between the banks. That is, each bank interacted with every other bank in the system.
We showed that the dynamics of the banks imply that banks exhibit flocking behaviour, where the
sample paths for the banks follow closely the mean behaviour of the system. In this chapter, we
analyse how different interbank network topologies affect systemic risk. We model these network
topologies with an unweighted graph, Γ. Let A denote the adjacency matrix of Γ, with elements
ai,j(·) ∈ {0, 1} denoting the ith row and jth column of A, for i, j = 1, . . . , N . Then, the model from
eq. (2.1) can be extended such that each bank’s interactions with other banks depends on whether
they are connected in the network. The dynamics of each bank are given by:

dXi
t =

µi

N

N∑
j=1

ai,j(t,Xt)(X
j
t −Xi

t) dt+ σi dW i
t , Xi

0 = 0, t ∈ [0, T ], (4.1)

The function ai,j(t,Xt) describes the lending preference from bank j to bank i. Notice that ai,j can
be time dependent and depend on the monetary reserve levels of all banks. The deterministic cases
where (ai,j)1≤i,j≤N = 1 corresponds to the model in eq. (2.1) with a complete graph, with all-to-all
coupling of the dynamics. The case where (ai,j)1≤i,j≤N = 0 corresponds to the case where there are
no interactions between the banks, and each bank’s dynamics follow the path of an independent
Brownian motion.

In this thesis, we study the impact on the stability of the banking system by incorporating some
common graphs as described in Chiba et al. (2018), such as the star network and random graphs.
Figure 4.1 shows an example of the star network, complete graph and a random graph. We
also consider some time evolving graphs, such as the impact of network homophily, which is the
theory that similar banks may be more likely to interact with each other than dissimilar ones, and
network heterophily, which is the opposite of network homophily. Figure 4.2 shows an example of
a homophilous and heterophilous graph, where similar banks are colour coded. Finally, we look at
the impact of including an exit system in the banking system, where poorly performing banks are
removed from the interbank network.
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Figure 4.1: Graphs representing the star, complete and a random network topology. A vertex
represents a bank, and an edge represents a link between two banks.

Figure 4.2: Homophilous and heterophilous graphs.

4.2 Star network
In a star network, there is one (or more) bank that is central, meaning it is connected to all other
banks, and other banks are not connected to each other. Let c denote the index of any central
banks. The adjacency matrix for the star network is modelled by:

ai,j(·) =

{
1, if i = c or j = c

0, if i 6= c and j 6= c
for i, j = 1, . . . , N.

We consider the banking structures given in eq. (2.2) with N = 10 banks and the ratio of banks
being 1:8:1. We vary which banks are central according to their coefficients µi and σi and study
the impact of imposing the star topology on the probability of the default event. That is, we take
the central banks to be from the set c ∈ {{1}, {2, . . . , 9}, {10}}. For group B, we do not find any
significant impact of imposing the star topology, with the probability of the default event remaining
at 2% in all three cases. For group A, we find that the banking system is most stable when the
central bank is the bank with the large coefficient µi and small coefficient σi. Figure 4.3 shows
the estimated loss distributions for group A with the star network for c ∈ {{1}, {2, . . . , 9}, {10}}.
We see that the loss distributions are least severe when the central bank is the bank with the
large coefficient µi and small coefficient σi, as the right tail of the distribution is the thinnest.
The estimated probability of the default event is 26% when c = {1}, 23% when c = {2, . . . , 9}
and 9% when c = {10}. When group A has no coupling in the dynamics, the probability of the
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Figure 4.3: Loss distributions for group A with the star network. The ratio of banks is 1:8:1 and
the index of the central banks vary.

default event is 5%. The reason why the probability of the default event is highest when the central
bank is the bank with the small coefficient µi and large coefficient σi is because this bank is more
likely to default first, and if it is central, it has a large influence on the empirical mean, and when
it defaults, it causes other banks to default. When the central bank is the bank with the small
coefficient µi and large coefficient σi, the probability of the default event is lower because there are
fewer connections from the problematic bank that has the small coefficient µi and large coefficient
σi to other banks. We conclude that the star network can have a material impact on the stability
of the banking system when the banking structure is relatively unstable, similar to the group A
structure.

4.3 Erdős-Rényi model (random graphs)
In a random graph, (ai,j)1≤i,j≤N is a random matrix, which we still assumed to be symmetric. We
denote the probability of an edge between any two banks by a constant p. The adjacency matrix
for our random graphs are defined by:

ai,j(·) =

{
1, with probability p

0, with probability 1− p
for i, j = 1, . . . , N with i < j, and p ∈ [0, 1].

For i > j, we assume ai,j = aj,i, so the adjacency matrix is symmetric. Note that when i = j, the
dynamics in eq. (4.1) do not depend on ai,i, so we can assume that it takes any value.

We analyse the impact of random graphs generated using the Erdős-Rényi model on the stability of
the banking system. Figure 4.4 shows the loss distributions when the adjacency matrix is generated
using the Erdős-Rényi model with p = 0.25, when the banking structure is given by groups A and
B as in eq. (2.2). In comparison to the loss distributions in figs. 2.2 and 2.3, we find that the loss
distributions for the random graphs are more normally distributed. The probability of the default
event occurring decreases materially for group A, while the impact for group B is minimal, with
the probability of the default event increasing marginally from 1% to 2%.

This is because the Erdős-Rényi model is a random graph where the probability of an edge between
any two banks is p = 0.25, so the adjacency matrix is sparse. As a result, the network structure
is similar to the case when there is no coupling in the dynamics and banks’ reserves follow an
independent Brownian path. For group A, we previously identified that the banks with a small
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Figure 4.4: Loss distributions for the Erdős-Rényi models with p = 0.25 for groups A and B.

coefficient µi and a large coefficient σi play an important role in the stability of the banking system,
as these banks have a large influence on the empirical mean and them defaulting often caused other
banks to default. In the Erdős-Rényi model, the banks with a small coefficient µi and a large
coefficient σi are less likely to be connected to other banks, so they have a smaller impact on
the stability of the banking system. The banking structure in group B was already stable, so the
impact of altering the network structure by using random graphs is minimal, and may even have a
slight adverse impact on the stability of the banking system by reducing the number of connections
between banks, making them more likely to revert away from the empirical mean and default.

4.4 Network homophily and heterophily
Network homophily refers to the theory that similar banks may be more likely to interact with each
other than dissimilar ones. Network heterophily is the opposite of network homophily and refers
to the theory that dissimilar banks may be more likely to interact with each other than similar
banks. Network homophily and heterophily can be important in the study of social networks, as
it can be used to explain the formation of social ties. For example, Motsch and Tadmor (2014)
study a class of models for self-organised dynamics based on alignment and find that heterophilous
dynamics rather than homophilous dynamics enhance consensus. We study the impact of network
homophily and heterophily on the stability of the banking system.

We first consider the banking structures given by groups A and B in eq. (2.2), and define banks to
be similar if they have the same coefficients for µi and σi. We then define the adjacency matrix for
the homophilous and heterophilous graphs as:

Homophily: ai,j =

{
1, if µi = µj and σi = σj

0, else

Heterophily: ai,j =

{
0, if µi = µj and σi = σj

1, else
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Figure 4.5 shows the loss distributions for the homophilous and heterophilous graphs for groups
A and B. We find that for group A, the loss distribution is less severe in the homophilous case as
opposed to the heterophilous case. The estimated probability of the default event occurring is 5%
for the homophilous case and 32% for the heterophilous case. Network homophily is preferred for
group A because the banks with small coefficients µi and large coefficients σi are problematic banks
that have a large impact on the empirical mean and are more likely to default first due to having
a large σ, which can result in a cascade of other banks defaulting. In the homophilous case, these
banks are not connected to other banks, so they have a smaller impact on the stability of the banking
system. On the other hand, for group B, the loss distribution is less severe in the heterophilous case
compared to the homophilous case. The estimated probability of the default event occurring is 9%
for the homophilous case and 2% for the heterophilous case. Network heterophily is preferred for
group B because when the banking system is inherently stable, increased interbank lending between
banks means that the dynamics of the banks are more coupled, so banks’ reserves are more likely to
stay close to the empirical mean, which increases the stability of the banking system. This example
shows that network homophily might be preferred when the banking system is inherently unstable,
while network heterophily might be preferred when the banking system is inherently stable.

Alternatively, we could define banks to be similar if they have similar monetary reserve levels. We
define the adjacency matrix for the homophilous graphs as:

ai,j(t,Xt) =

{
1, if |Xi

t −Xj
t | ≤ τ

0, if |Xi
t −Xj

t | > τ
for i, j = 1, . . . , N,

where τ denotes the radius of interactions, defined as the maximum difference in reserves allowed
between Xi

t and Xj
t for them to continue interacting with each other.

Similarly, we model adjacency matrix for the heterophilous graphs as:

ai,j(t,Xt) =

{
1, if |Xi

t −Xj
t | > τ

0, if |Xi
t −Xj

t | ≤ τ
for i, j = 1, . . . , N,

where τ is now defined as the minimum difference in reserves allowed between Xi
t and Xj

t for them
to continue interacting with each other.

We parameterise the model as in chapter 2 with N = 10 banks with µ = 1, σ = 1, η = −0.7 and
take τ = 0.5. Figure 4.6 shows the loss distributions for the homophilous and heterophilous graphs
for groups A and B under this new definition. We find similar results to the case when banks are
similar if they have the same coefficients for µi and σi. For group A, the probability of the default
event occurring is 6% for the homophilous case and 32% for the heterophilous case. For group
B, the probability of the default event occurring is 9% for the homophilous case and 2% for the
heterophilous case. The results are robust to the definition of similarity between banks, as banks
with similar coefficients µi and σi are also likely to have similar monetary reserve levels.

4.5 Exit system
Until now, the models we have considered assumed that defaulted banks remain in the banking
system and continue to interact with other banks through the empirical mean. However, in reality,
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Figure 4.5: Loss distributions for the homophilous and heterophilous graphs for groups A and B.
Banks are similar if they have the same coefficients for µi and σi.

banks that have defaulted, or are illiquid, may be removed from the banking system and no longer
borrow or lend on the interbank market. We model this by introducing an exit system, where
banks that hold monetary reserves less than a default threshold are removed from the interbank
network. This means that the dynamics of an exited bank are given by an independent Brownian
motion: dXi

t = σ dW i
t . We allow a bank to recover from default if their monetary reserves exceed

the default threshold and recovered banks can borrow and lend in the interbank market as normal.
We call bank i ‘weak’ at time t if Xi

t ≤ η and we remove it from the interbank network by setting
ai,j(t,Xt) = aj,i(t,Xt) = 0 for j = 1, . . . , N .

The effect of removing weak banks from the interbank network on systemic risk is ambiguous.
On one hand, removing weak banks from the interbank network may have a stabilising effect on
the banking system, as banks with a low amount of monetary reserves borrow from other banks,
reducing other banks’ reserve levels, which can cause them to default. This is known as the
contagion channel, where one banking failure can cause other banks to fail. On the other hand, a
weak bank is less likely to recover if it is removed from the interbank network, as it cannot borrow
from other banks. This can have a destabilising effect on the banking system, as weak banks are
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Figure 4.6: Loss distributions for the homophilous and heterophilous graphs for groups A and B.
Banks are similar if they have similar monetary reserve levels.

more likely to stay defaulted, which has a negative impact on the empirical mean. We explore the
impact of removing weak banks from the interbank network on systemic risk.

We first study the homogeneous case when all banks have identical coefficients µi = µ and σi = σ.
We parameterise the model as in chapter 2 with N = 10 banks with µ = 1, σ = 1 and η = −0.7.
Figure 4.7 shows the loss distributions for the model with and without the exit process. We find
that the loss distribution with the exit process is similar to the loss distribution without the exit
process. Furthermore, the probability of the default event remains unchanged at 3%. For this
homogeneous banking system, we find that removing weak banks from the interbank network has
little impact on the stability of the banking system, as the probability of the default event occurring
remains unchanged. This is because when weak banks are removed from the interbank network,
there is a trade-off between reducing the likelihood of other banks failing through the contagion
channel, but it also reduces the likelihood of weak banks recovering. For this homogeneous banking
system, both competing channels are roughly balanced, so there is not a significant change in the
stability of the banking system.
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Figure 4.7: Loss distributions with and without the exit process.

Next, we study the case when the banking system is heterogeneous. We consider the banking
structure given by group A as given in eq. (2.2). Figure 4.8 shows the loss distributions for group
A when the ratio of banks is 8:1:1, 1:8:1 and 1:1:8, and weak banks are removed from the interbank
network. We compare these results with the model without the exit process in fig. 2.4. The loss
distributions with the exit process are more positively skewed than the loss distributions without
the exit process, with the probability of all banks defaulting dropping to zero. This is because the
exit process removes weak banks from the interbank network, which reduces the likelihood of other
banks failing through the contagion channel. Additionally, we estimate the probabilities of the
default event occurring for group A for the three cases on the ratio of banks with the exit process
to be 17%, 5% and 8%, respectively. These probabilities are much lower than the model without
the exit process, when the probabilities estimated were 28%, 24% and 45%, respectively. For this
heterogeneous banking system, we find that removing weak banks from the interbank network has a
significant stabilising effect on the banking system, as the probability of the default event occurring
decreases significantly. This is because group A contains banks with small coefficients µi but high
coefficients σi, who are systemic as they have a large impact on the stability of the banking system,
as described in chapter 2. Removing these systemic banks from the interbank network reduces the
probability of the default event occurring as other banks are less likely to fail through the contagion
channel.

These results have important policy implications. A social planner who aims to minimise the prob-
ability of the default event must carefully consider the banking structure when assessing whether it
is beneficial to remove weak banks from the interbank network. For a homogeneous banking system,
removing weak banks from the interbank network has little impact on the stability of the banking
system. However, for a heterogeneous banking system, removing weak banks from the interbank
network can have a significant stabilising effect on the banking system. It is worth remembering
that there is a trade-off on systemic risk when removing weak banks from the banking system, as
these weak banks are less likely to recover. There could also be banking structures where removing
weak banks from the interbank network has a destabilising effect on the banking system.
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Figure 4.8: Loss distributions for group A when the ratio of banks is 8:1:1, 1:8:1 and 1:1:8, and
weak banks are removed from the interbank network.

4.6 Summary
Overall, we found that the interbank network structure can have a material impact on systemic
risk. Our numerical experiments suggest that some networks are preferred over others, depending
on the banking structure. A central bank may be able to reduce the probability of the default
event occurring by implementing policy that encourages banks to form a network structure that is
preferred for the banking structure. For example, a less interconnected network may be preferred
for a banking structure that is inherently unstable, while a more interconnected network may be
preferred for a banking structure that is inherently stable.
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Chapter 5

Interbank game

5.1 Introduction
In this chapter, we study the impact of including a central bank into the interbank market. Carmona
et al. (2015) develop a stochastic differential game that models interbank borrowing and lending,
where each bank controls its rate of borrowing or lending to a central bank. We assume that
number of banks N is finite, and that the time horizon T is finite. Let Xi

t denote the log-monetary
reserves of bank for i = 1, . . . , N at time t ∈ [0, T ]. The dynamical process is given by

dXi
t =

(
µ(X̄t −Xi

t) + αi
t

)
dt+ σ

(
ρ dW 0

t +
√
1− ρ2 dW i

t

)
, Xi

0 = 0, t ∈ [0, T ], (5.1)

where the control αi := (αi
t)t∈[0,T ] is chosen to minimise the running quadratic cost f i and terminal

cost gi

αi = arg min
αi

J i(α) := E
[∫ T

0
f i(t,Xt, α

i
t) dt+ gi(XT )

]
, (5.2)

where f i : [0, T ]× RN × R → R and gi : RN → R are given by:

f i(t,Xt, α
i
t) =

1

2

(
αi
t

)2 − qαi
t

(
X̄t −Xi

t

)
+

ε

2

(
X̄t −Xi

t

)2
, with q2 ≤ ε, (5.3)

gi(XT ) =
c

2

(
X̄T −Xi

T

)2
, (5.4)

where Xt := (X1
t , . . . , X

N
t ) and α := (α1, . . . , αN ).

The interpretation of this model is that banks can control their rate of borrowing or lending to
the central bank at each time t ∈ [0, T ) through the control αi

t ∈ R. Banks borrow from the
central bank if αi

t > 0 and lend to the central bank if αi
t < 0. The introduction of the controls

and the optimisation problem in eqs. (5.2) to (5.4) give banks an incentive to have reserves, in
contrast to previous models. The running cost function given by eq. (5.3) consists of three terms.
The first term 1

2(α
i
t)
2 is the cost of borrowing or lending from the central bank. The second term

qαi
t(X̄t − Xi

t) incentivises the bank to borrow if their monetary reserve level is smaller than the
mean level, and lend if their monetary reserve level is larger than the mean level. The parameter q
is the strength of this incentive. Finally, the quadratic terms (X̄T −Xi

T )
2 in the running cost and
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terminal cost in eq. (5.3) and eq. (5.4) penalise the bank for having a monetary reserve level that
is different from the mean level. The parameters ε and c are the strengths of this penalty. The
assumption that q2 ≤ ε ensures that f i is convex in (Xt, α

i
t). This ensures that the optimisation

problem in eq. (5.2) has a unique solution.

5.2 Methodology
The interbank game given in eq. (5.1) falls into the class of N -player Linear-Quadratic (LQ) games
due to the model’s linear dynamics and quadratic cost function. We focus on the closed-loop Nash
equilibrium of the game, where each bank’s control at time t ∈ [0, T ) is a function of the state of the
system, Xt. This is as opposed to the open-loop Nash equilibrium, where banks’ optimal controls
are deterministic functions αt given at time t = 0. We focus on the closed-loop Nash equilibrium
as we think the assumption that banks can observe or infer other banks reserve levels over time is
more realistic, and the problem is more challenging.

For this particular game, Carmona et al. (2015) construct analytical solutions for the Nash Equilib-
rium of eq. (5.1) for both the open-loop and closed-loop Nash equilibria. However, the existence of
the analytical solution to this game is dependent on its particular features; having linear dynamics,
quadratic costs and interactions through the empirical mean. Most models will not have these
specific features. For example, if we wish to extend the interbank game in eq. (5.1) to analyse the
impact of the banking structure on financial stability by allowing the model parameters µ and σ to
be bank dependent, or by incorporating different network structures, these games might no longer
admit an analytical solution, or it will be difficult to derive. Therefore, we need to rely on numer-
ical methods to construct approximate solutions to the games. Constructing numerical solutions
to these games is often still challenging, due to the high-dimensional nature of the problem, which
increases with N and T . Other modelling features such as common noise add additional compli-
cations. To overcome these issues, we use a deep learning method to construct an approximate
solution to solve these games.

Recent developments in deep learning methods have made it possible to approximate solutions
to high-dimensional problems such as the interbank game described in eqs. (5.1) to (5.4), which
may not be feasible to solve using standard numerical methods due to the curse of dimensionality.
Hu and Lauriere (2022) give a comprehensive overview of different machine learning methods for
solving stochastic games. We adapt their global in time approach to use a single neural network to
directly parameterise the banks’ control functions in order to estimate the optimal controls. This
approach trains the neural network using the whole time horizon at once.

We construct an approximate solution to the discrete time version of eqs. (5.1) to (5.4). We
discretise the time interval [0, T ] into NT equally spaced subintervals (tn)NT

n=0, where t0 = 0, tn = T
and the width of a subinterval tn − tn−1 is equal to ∆t > 0. We approximate the dynamics in
eq. (5.1) by their discretised versions:

X̌i
tn+1

= X̌i
tn +

(
µ
(
X̌tn − X̌i

tn

)
+ αi

tn

)
∆t+ σ

(
ρ∆W̌ 0

tn +
√
1− ρ2∆W̌ i

tn

)
, X̌i

0 = 0, (5.5)

where ∆W̌ 0 and ∆W̌ i are i.i.d random variables with distribution N (0,∆t). The optimal controls
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(αtn)
NT−1
n=0 are chosen to minimise the discretised version of the total cost in eq. (5.2):

(
αi
tn

)NT−1

n=0
= arg min

(αi)

J̌ i(α) = E

[
NT−1∑
n=0

f i(tn, X̌tn , α
i
tn)∆t+ gi(X̌T )

]
. (5.6)

We parameterise the control function at each time step with a neural network αθ(tn, Xtn) : RN+1 →
RN , where S := (tn, X

1
tn , . . . , X

N
tn) is the (N+1)-dimensional input for the neural network and θ are

the parameters of the neural network. Given this parameterisation, the cost function in eq. (5.6)
can be rewritten as:

J̌ i(θ) = E

[
NT−1∑
n=0

f i(tn, X̌
θ
tn , α

i
θ(tn, X̌

θ
tn))∆t+ gi(X̌θ

T )

]
, (5.7)

where (X̌θ
tn)

NT
n=1 are computed using eq. (5.5) using the parameterised version of the controls

αθ(tn, X̌
θ
tn).

We can estimate the expected value in eq. (5.7) using Monte Carlo simulations to generate sample
paths (X̌b,θ

tn )NT
n=0 for b = 1, . . . , NB and then taking the average of the cost function for each sample:

Li(θ) =
1

NB

NB∑
b=1

[
NT−1∑
n=0

f i(tn, X̌
b,θ
tn , αi

θ(tn, X̌
b,θ
tn ))∆t+ gi(X̌b,θ

T )

]
. (5.8)

In practice, we use the antithetic variates method to reduce the variance of our Monte Carlo
estimator, as explained in Kroese et al. (2013). For each Brownian path (∆W̌tn)

NT
n=1 used to

simulate (X̌θ
tn)

NT
n=0 using eq. (5.5), we also simulate (X̌θ

tn)
NT
n=0 using the antithetic Brownian path

(−∆W̌tn)
NT
n=1. In total, we generate NB/2 antithetic pairs of Brownian paths, where an antithetic

pair is given by (∆W̌tn ,−∆W̌tn)
NT
n=1. This gives us NB Brownian paths, which are used to generate

the sample paths ((X̌b,θ
tn )NT

n=0)
NB
b=1 that are used in eq. (5.8).

Finally, the loss function for training our neural network is given by the mean of the losses for each
bank:

L(θ) =
1

N

N∑
i=1

Li(θ). (5.9)

5.3 Implementation
We solve the discretised version of the interbank game given in eqs. (5.5) to (5.7) using the global in
time direct parameterisation method described above. The parameters we choose for the interbank
game are N = 10, NT = 50, NB = 100, T = 1, µ = 1, σ = 0.2, ρ = 0.2, q = 1, c = 1 and
ε = 1.5. We use a feedforward neural network to approximate the optimal controls in the interbank
game. Figure 5.1 shows the architecture of our neural network. The hyperparameters for our neural
network were chosen from performing a simple hyperparameter sweep, and we found that a neural
architecture consisting of two hidden layers with 64 nodes and the ReLU activation function for
each hidden layer, along with no activation function for the output layer works well to approximate
the banks’ optimal control. The neural network takes as input the (N+1)-dimensional state vector
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Figure 5.1: The feedforward neural network’s architecture for approximating the optimal controls
for the interbank game. Image adapted from Neutelings (2023).

Algorithm 1: Global in time direct parameterisation of the control function
Input: N,T,∆t,X0, µ, σ, ρ : Model parameters
NT : Number of subintervals on [0, T ]
NB : Batch size
Nepochs : Number of epochs

1 Initialisation:
2 Pre-compute NB/2 Brownian paths (∆W̌ 0

tn)
NT
n=0 and (∆W̌ i

tn)
NT
n=0 for i = 1, . . . , N , from

the distribution ∆W̌ ∼ N (0,∆t). Include the antithetic Brownian paths.
3 Define the architecture of the neural network, αθ(tn, X̌tn).
4 Initialize the weights of the neural network, θ using the Glorot uniform distribution.

//Training loop:
5 for epoch = 1 to Nepochs do
6 Simulate NB sample paths (X̌tn)

NT−1
n=0 according to eq. (5.5), using the pre-computed

Brownian increments and the neural network to parameterise the control;
αtn = αθ(tn, X̌tn).

7 Compute the loss L(θ) according to eqs. (5.8) to (5.9).
8 Compute ∇θL, the gradients of the loss with respect to the weights, θ.
9 Update the weights, θ using gradient descent.
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Figure 5.2: The neural network’s loss function during training for the interbank game.

S = (tn, X
1
tn , . . . , X

N
tn) and outputs the approximated controls for each bank at time step tn given

by (α1
tn , . . . , α

N
tn). For N = 10, this neural network has 5578 trainable parameters. We use the

Adam optimiser with a learning rate of 0.0001 and train the neural network for 1000 epochs, after
which the loss function has converged. Figure 5.2 shows the loss function for the neural network
during training. The training time for this model was around six minutes on a regular laptop CPU.

5.4 Results
We find that the global in time direct parameterisation method is able to estimate the optimal
controls and dynamics for the interbank game with a good degree of accuracy. Figure 5.3 compares
the analytical and estimated dynamics and optimal controls for N = 10 banks over the time horizon
[0, 1], with NT = 50 time steps, given the same simulated Brownian paths (∆W̌ 0

tn ,∆W̌ i
tn)

NT
n=0 for

i = 1, . . . , N . The estimation of the dynamics are very close to the analytical solution and the
estimation of the optimal controls are also reasonably close to the analytical optimal controls. It
is likely that we could improve the estimation of the optimal controls by increasing the batch size
used for estimating the expectation in eq. (5.8) or by training the neural network longer, but this
would increase the computational time. As the method is able to estimate the optimal controls
and dynamics with a good degree of accuracy, we could use the method to study variations of
the model given by eqs. (5.1) to (5.4) which do not admit an analytical solution, such as allowing
for heterogeneity in the model parameters µ and σ, or incorporating different interbank network
structures.

Additionally, we find that the introduction of a central bank into the interbank market increases
the stability of the financial system. We estimate the loss distribution of the interbank game
described in eqs. (5.5) to (5.7), with and without the controls. We define a bank to default if
its log-monetary reserves fall below −0.15 at any time step tn ∈ [0, 1]. Each loss distribution
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Figure 5.3: The analytical and estimated dynamics and optimal controls for the interbank game.

is estimated using 5000 sample paths; i.e. we simulate the sample paths (X̌tn)
NT
n=0 according to

eq. (5.5) with and without controls 5000 times, and from this, compute the probability density
function for the number of banks defaulting. We use the same simulated Brownian paths for each
model, so the only difference between the two models is the controls.

Figure 5.4 compares the loss distribution for the model with the controls to the loss distribution
for the model without the controls. The loss distribution of the model with the controls is more
concentrated around zero, which indicates that the model with the controls is more stable than
the model without the controls. This is because the controls incentivise a bank to borrow from
the central bank if its log-monetary reserves falls below the mean level. The central bank is able
to provide additional liquidity to the failing banks, which helps to prevent failing banks from
defaulting. Interestingly, for this example, the right tail of the loss distribution of the model with
the controls is not heavier than the right tail of the loss distribution of the model without the
controls. We may have expected this to be the case given that the introduction of the control
should increase the flocking behaviour of the banks, as banks are incentivised to borrow and lend
to stay close to the mean level of monetary reserves in the financial system. This should increase
the probability of many banks defaulting at the same time. However, this is not the case for this
example, which suggests that the introduction of the control has strictly improved the stability of
this financial system.

5.5 Methodology caveats
The advantage of this global in time direct parameterisation method is that we are able to use a
single neural network to estimate the control functions for all banks. Moreover, the parameters of
the neural network are shared across all time steps and banks, so all the parameters can be trained
at the same time. In practice, we find that the global in time direct parameterisation method
works well when the number of banks and the number of time steps are relatively small. This
is because the computational complexity of the problem increases exponentially as the number of
banks and the number of time steps increase, resulting in increasingly long training times. For
example, we find that the model in eqs. (5.5) to (5.7) with N = 10 banks and NT = 20 time steps
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Figure 5.4: The estimated loss distributions for the model with and without controls.

takes approximately one minute to train, while the model with N = 10 banks and NT = 50 time
steps took approximately six minutes to train, on the same regular laptop CPU. This makes the
method unsuitable for learning the control functions for the mean field game when the number of
banks is very large, or when the time horizon is very long, due to the computation complexity. Hu
and Lauriere (2022) suggest that other methods such as the signature deep fictitious play method
might be more suitable for solving these types of mean-field games with common noise when the
number of agents is large.
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Chapter 6

Network inference using neural
networks

6.1 Introduction to the problem
In this chapter, we solve the inverse problem of inferring the network given an observed time series of
the banks’ dynamics. We follow the methodology presented in Gaskin et al. (2023), who developed
a methodology for inferring the network adjacency matrix given the observed time series of the
agents’ dynamics, using a neural network.

The goal is to use a neural network to learn the function that maps the observed time series to
an adjacency matrix that is consistent with the observed dynamics. We assume that other than
the adjacency matrix, the dynamical process is known, including the value of all parameters. In
particular, we assume that the dynamical process is known and given by

dXi
t =

µ

N

N∑
j=1

ai,j(X
j
t −Xi

t) dt+ σ dW i
t , Xi

0 = x, t ∈ [0, T ], (6.1)

and the parameters µ, σ and x are assumed to be known. We also assume that µ and σ are constant
for each bank, although this assumption can be relaxed. Here, ai,j refer to the value of the i-th
row and j-th column of the adjacency matrix A.

This inverse problem may not have a unique solution. Suppose we observe a time series of X
from eq. (6.1) with length L. If L < N , the problem is under-determined and requires additional
constraints on A in order to estimate it. If L = N , the problem is just-identified. However,
symmetries in the data may mean that the number of linearly independent equations is less than
N , so the problem may still under-determined. Even with L � N , there may be multiple adjacency
matrices that are consistent with the observed time series of the dynamical system.

Ordinary Least Squares (OLS) can be used to solve the inverse problem when the dynamics are
linear in the adjacency matrix and the problem is just-determined. However, Gaskin et al. (2023)
find that their neural approach to inferring the network performs better than OLS in the presence
of noise. We employ their method to infer the network with the dynamical process given by eq. (6.1)
in the presence of no noise (σ = 0) and additive noise (σ > 0).
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6.2 Methodology
To test our methodology, we generate synthetic data. First, we generate a random adjacency matrix
A, where for simplicity, A is assumed to be symmetric, the diagonal elements of A are equal to
1, and other values of the matrix take values 1 with probability p = 0.3 and 0 with probability
1 − p. The assumption that A is symmetrical, and the diagonal elements are 1 are not necessary,
but simplifies the problem of estimating the number of values of A from N2 to N(N−1)

2 . This
reduces the computational complexity of the problem, which is noticeable for large N . Given A,
we simulate eq. (6.1) using the Euler-Maruyama method to create a time series Tobs, where

Tobs =


X0

X1
...

XL

 , Xt =
(
X1

t , . . . , X
N
t

)
, L � N. (6.2)

The goal is to estimate an adjacency matrix Â such that the simulated dynamics given the estimated
network of banks, denoted T̂pred, produces a good approximation of the observed time series given
the same realisation of the Brownian paths. We adopt a reinforcement learning approach to train
a neural network on the observed time series to accurately estimate Â.

We batch the observed time series into rolling windows of length q = 2 to produce our training
dataset T, where

T =


X0, X1

X1, X2
...

XL−1, XL

 . (6.3)

We define a neural network mθ : RNq → RN2 , where Nq is the dimension of an input, which is a
flattened observation of the batched time series T, and N2 is the dimension of the outputted adja-
cency matrix Â. In our algorithm, we directly impose that Â is symmetrical and that the diagonal
values of Â are equal to one, so in practice, only N(N−1)

2 outputs are utilised. The assumption
that diag(A) = 1 is completely arbitrary as the dynamics in eq. (6.1) would be unchanged if the
diagonal elements of A were equal to any other constant.

Next, we simulate the dynamics given in eq. (6.1), but replacing ai,j with their estimated coun-
terparts âi,j to produce the estimated time series T̂, using the initial values of each row of T,
where

T̂ =


X0, X̂1

X1, X̂2
...

XL−1, X̂L

 , X̂t+1 =
(
X̂1

t+1, . . . , X̂
N
t+1

)
,

and X̂i
t+1 is computed using the Euler-Maruyama method:

X̂i
t+1 = Xi

t +
µ

N

N∑
j=1

âi,j

(
Xj

t −Xi
t

)
∆t+ σ∆W i

t . (6.4)
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The loss function is chosen as

J(T, T̂) = 1

2
‖T − T̂‖22 =

1

2

L∑
t=1

(
Xt − X̂t

)2
, (6.5)

which is proportional to the sum of squared differences between estimated and observed time series.
The neural network’s weights are then updated to minimise the loss.

6.3 Implementation
We solve for the network given two different calibrations of eq. (6.1). For both calibrations, we set
N = 9, T = 1 and generate a random adjacency matrix A that acts as the true network. For the
numerical solver, we set ∆t = 0.001, X0 = (−4,−3,−2,−1, 0, 1, 2, 3, 4) and simulate an observed
time series over the time horizon [0, T ]. The first half of the time series is used as training data for
the models, and the second half is reserved for validating the model’s performance by assessing its
ability to forecast out of sample. We assume the model parameters for eq. (6.1) are known, and
set µ = 1 for both models. For the first model, we set σ = 0, so the dynamics are deterministic.
For the second model, we set σ = 0.1, which adds a moderate amount of noise to the dynamical
system.

We use a feedforward neural network to estimate the adjacency matrix of the interbank network.
Figure 6.1 shows the architecture of our neural network. The hyperparameters for our network are
chosen using heuristics and a simple hyperparameter sweep. We find that a deep neural network
with two hidden layers and 20 nodes per layer works well to estimate an adjacency matrix that is
consistent with the observed dynamics of the system. The input layer takes one row of T, which is
a vector of length Nq. The neural network outputs the adjacency matrix, which has N2 elements.
This is then reshaped to an N × N dimensional matrix to get Â, and we then impose that Â is
symmetrical and has diagonal elements equal to one. In each layer, we omit the bias and use the
ReLU activation function except for the outer layer, where we use the sigmoid activation function
to constrain the output to be between 0 and 1. For N = 9, this neural network has 2380 trainable
parameters.

To train the neural network’s weights, we use the Adam optimiser with a learning rate of 0.002.
The neural network’s weights are initialised such that the prior is the identity matrix, IN . To
initialise the weights, we define the loss function by:

L(Â) =
1

2
‖Â − IN‖22 =

1

2

N∑
i=1

N∑
j=1

(âi,j − δi,j)
2 , (6.6)

and train the neural network’s output given the training data until L(Â) is sufficiently small. After
initialising the neural network’s weights, we reset the learning rate and other parameters of the
Adam optimiser. If one had prior knowledge of the true network, the training can be sped up by
changing the prior of the adjacency matrix from IN to a matrix closer to the true solution. For
example, if we knew that the true network was more densely connected, it would be better to
initialise the weights with a prior of a fully connected adjacency matrix.
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Figure 6.1: The feedforward neural network’s architecture for estimating the interbank network.

Algorithm 2: Network inference using a neural network
Input: N,T,∆t,X0, µ, σ, q : length of time window, Nepochs : number of epochs

1 Initialisation:
//Generate synthetic data

2 Generate a random, symmetrical adjacency matrix A with diag(A) = 1.
3 Simulate the dynamical process in eq. (6.1) using the numerical solver to get an

observed time series Tobs.
4 Batch Tobs into rolling windows of length q according to eq. (6.3) to get the training

dataset T.
//Initialise neural network

5 Define the architecture of the neural network, mθ.
6 Initialize the weights of the neural network, θ, such that mθ(T) = IN , where IN is the

prior of the adjacency matrix.
//Training loop:

7 for epoch = 1 to Nepochs do
8 Compute Â = mean(mθ(T)).
9 Impose additional assumptions on Â (symmetrical and diag(Â) = 1).

10 Simulate the dynamical process according to eq. (6.4) using the numerical solver to get
an estimated time series T̂.

11 Compute J(T, T̂) according to eq. (6.5).
12 Compute ∇θJ , the gradients of the loss with respect to the weights, θ.
13 Update the weights, θ using gradient descent.
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Figure 6.2: The log10 losses for the models with σ = 0 and σ = 0.1. The chart on the right is
smoothed using an exponential moving average with a smoothing parameter of 0.99.

6.4 Results
We train the neural networks for both calibrations of the model using batch gradient descent until
the loss functions converge. Figure 6.2 shows the training progress for the neural networks for both
models. The model with no noise smoothly converges after 2000 epochs, which takes less than one
minute when trained on a regular laptop CPU. The model with noise takes around 10000 epochs to
converge and takes around three minutes to train. The loss remains higher compared to the model
without noise because even if the neural network perfectly predicts the network, the simulated
paths for T̂ will have different realisations for the Brownian increments, so J(T, T̂) is non-zero.

We find that the neural network does a good job of inferring the network structure for both
calibrations of the model. Figures 6.3 and 6.4 show the simulated dynamics using the actual
network and the predicted network for both calibrations of the model. The models are trained on
the first half of the time series (up to t = 0.5), and the second half of the time series is used as a
measure of the out of sample performance for the model.

For the model without noise, the dynamics are deterministic, and the model estimates a network
that produces a time series that replicates the training data to machine precision, which can be
seen on fig. 6.3. For the model with noise, the model is almost able to perfectly fit the training data
and does a good job of out-of-sample forecasting too, which can be seen on fig. 6.4. This suggests
that the neural network is able to learn the network structure from the observed time series of the
dynamical system, despite there being a moderate amount of noise in the system with σ = 0.1.

6.5 Methodology caveats
We find that the method works well in predicting a network consistent with the observed time
series of the dynamical system when the noise parameter σ is not too high relative to the parameter
controlling the strength of interactions, µ. Furthermore, it is easier to predict the network when
the banks are dissimilar. We achieved this in the above models by spreading out the initial starting
positions of the banks. It becomes difficult to estimate the network when all the banks start at the
same point, the noise parameter is high and the strength of bank interactions is weak.
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Figure 6.3: Simulated dynamics using the actual and predicted network for the model with σ = 0.

Figure 6.4: Simulated dynamics using the actual and predicted network for the model with σ = 0.1,
under the same Brownian path.
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Chapter 7

Conclusion

7.1 Summary
In this thesis, we analysed several models of the interbank market that used coupled stochastic
differential equations to capture the interconnectedness of the interbank market. Our contribution
to the literature is through numerical experiments and analysis of modelling features on the stability
of the banking system.

To start with, we considered a simple model of the interbank market, where the banks are identical
and interact with each other through the empirical mean. We found that even a simple model of
the interbank market can have rich dynamics, and that different parameters for µ and σ can lead
to different outcomes on the stability of the banking system.

We then extended the model to allow for heterogeneity in the model parameters. Our numerical
experiments suggested that a heterogeneous banking system with predominantly intermediate sized
banks can lead to a more stable banking system. We also analysed the impact of including common
and multiplicative noise to model aggregate uncertainty in the banking system, and found that
including a highly correlated noise process leads to a much less stable banking system.

Additionally, we analysed the impact of alternative network structures on the stability of the
banking system, which to our knowledge, hasn’t been done before for the coupled diffusion models
that we consider. We found that the interbank network can have a significant impact on the stability
of the banking system, and that the probability of the default event can be highly dependent on the
network structure. In particular, we found that when there are problematic banks in the interbank
network, which are banks with low coefficients µi but high coefficients σi, it is better for the banking
system if these banks are not connected to other banks. This is because if the problematic banks
are connected to other banks, they can cause a cascade of defaults in the banking system, which
can lead to a systemic crisis. On the other hand, increased interconnectedness can improve the
stability of the banking system if the banking structure is more healthy. This is because the banks
can share liquidity with each other, which can help to prevent banks from defaulting.

Next, we studied the impact of including a central bank in the interbank market to create a game,
where banks now have a control function where they can optimally choose the rate at which they
borrow and lend from the central bank. We found that the introduction of a central bank into
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the interbank market increases the stability of the financial system. In general, it is not possible
to analytically derive the optimal controls for the banks in the interbank game, so we developed a
deep learning method for approximating the solution of the interbank game. We found that our
method is able to accurately approximate the optimal controls and dynamics for the banks in the
interbank game.

Finally, we developed a deep learning methodology for inferring the network structure of the inter-
bank market using neural networks. Our method is able to predict an interbank network that is
consistent with the observed dynamics, even when the dynamical system has a moderate degree of
noise.

7.2 Policy implications
This class of coupled stochastic diffusion models are currently not being used at the Bank of
England. In this thesis, we have shown that these models can be useful for studying the stability
of the banking system and has potential to be used for policy analysis. In particular, we have
shown that the composition of banks in the interbank market, as well as the interbank network
can have a significant impact on the stability of the banking system and the probability of the
default event. This suggests that the Bank could consider how it could implement policy to achieve
a more stable banking structure. For example, our numerical experiments suggest that the current
banking system with a few large banks dominating the interbank market might be less stable than
a banking system with more intermediate sized banks. These models also have application in stress
testing, where the Bank could use this class of models to develop a model for bank liquidity, which
has recently gained traction due to the failure of Silicon Valley Bank in 2023 due to inadequate
liquidity.

Our development of a deep learning methodology for inferring the network structure of market has
potential to be used for policy analysis. For example, the Bank is interested in studying the market
for non-banks such as mutual funds, where the market structure is not as well understood given
data limitations. The Bank could use our methodology to infer the network of non-banks from
some observed time series of their dynamics, and use the inferred network for stability analysis and
for forecasting.

7.3 Further work
Finally, we describe some possible extensions to the models and methodologies presented in this
thesis that we think could be interesting to explore.

In this thesis, we generally limited the number of banks to be relatively small due to the compu-
tational complexity from simulating many coupled diffusion processes, but it would be interesting
to study the dynamics of the model when the number of banks is very large, as well as deriving
theoretical estimates for the mean-field limit of the probability of the default event for the interbank
model with networks in chapter 4.

There are also several modelling features which we did not consider in our simple interbank model.
For example, we could have considered a model with a Hawkes process, which is a self-exciting
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process that could be used to model the impact of fire sales on the financial system, as in Borovykh
et al. (2018).

In Chapter 5, we developed a deep learning method that accurately approximates the banks’
controls in the interbank game. We used this method to study the effect of introducing a central
bank into the interbank market, which increased the stability of the financial system. However,
we only considered a simple model where all other banks were identical. It would be interesting
to study the effect of introducing a central bank into a more complex banking system, where the
banks are heterogeneous. For example, we could consider a model where the banks have different
parameters for µ and σ, such as in chapter 2. It would also be interesting to study the effect of
introducing a central bank into a model with a more complex network structure. For example,
we could consider a model where the underlying network structure results in an unstable banking
system, and see whether the introduction of the central bank can improve the stability of the
system, or whether it would make the system less stable. From a numerical perspective, it would
also be interesting to consider other algorithms for approximating the solution of the interbank
game that scale better as the number of banks and the number of simulated time steps increase,
such as those algorithms presented in Hu and Lauriere (2022).

For the network inference methodology presented in Chapter 6, it would be interesting to see if
our method is robust when the number of banks is very large, as the size of the adjacency matrix
increases quadratically with the number of banks. It would also be interesting to see if our method
is robust when the dynamical system has common or multiplicative noise.

Finally, we could calibrate our models to fit the structure of the UK banking system, such as
calibrating banks’ initial reserve levels, their model parameters as well as the interbank network,
and then try to improve the stability of the banking system by implementing policy that could
alter modelling features such as the network structure. This would require a more detailed analysis
of the UK banking system and would require the use of confidential banking data and is beyond
the scope of this thesis.
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Appendix A

Preliminaries

A.1 Stochastic processes
We give a brief overview of some technical details regarding stochastic processes. The reader is
referred to Pavliotis (2014) for a more detailed treatment of the topics presented in this section. We
assume that the reader is already familiar with the fundamentals of probability theory, although
the reader can refer to Appendix B of Pavliotis (2014) for a review of the topic.

A stochastic process is a collection X = (Xt)t∈T of F-measurable random variables, where T is an
ordered set and F = (Ft)t∈T is the natural filtration with respect to X.

A.1.1 Brownian Motion

A stochastic process W = {Wt}t≥0 is a standard Brownian motion if it satisfies the three conditions:

• W0 = 0;

• Wt is almost surely continuous;

• for every 0 ≤ s ≤ t, Wt − Ws is independent and normally distributed with mean 0 and
variance t− s.

In this thesis, we assume that bank’s monetary reserves is a stochastic process, which fluctuates
randomly over time and that these fluctuations are independent of each other. The properties of
Brownian motion make it suitable to model such a process. Although Brownian motion is almost
surely continuous, it is nowhere differentiable, so standard methods from calculus are not applicable.
Itô calculus extends the standard methods of calculus to stochastic processes.

Thus far, we have taken for granted that a stochastic process satisfying the above properties exists
and that there exists a probability space (Ω,F ,P) supporting a countable sequence of independent
Brownian motions. The proof for the existence of Brownian motion is given in Pavliotis (2014).
For our thesis, we omit such technicalities and always assume that an underlying probability space
(Ω,F ,P) supporting our stochastic process X exists.
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A.1.2 Stochastic differential equation

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms
is a stochastic process. We consider stochastic differential equations of the form

Xt = x+

∫ t

0
a(u,Xu) du+

∫ t

0
b(u,Xu) dWu (A.1)

or equivalently in differential equation form,

dXt = a(t,Xt)dt+ b(t,Xt)dWt, X0 = x, 0 ≤ t ≤ T, (A.2)

where a and b are Borel-measurable functions. The initial condition X0 = x can either be deter-
ministic or a random variable with a known distribution.

A weak solution to the stochastic differential equation is a probability space (Ω,F ,P) and a stochas-
tic process Xt that solves the integral eq. (A.1).

In this thesis, we omit many technical details and implicitly assume that all regularity conditions
are satisfied such that there exists a weak solution to our stochastic differential equation. We rely
on numerical methods to solve our stochastic differential equations.

A.1.3 Numerical simulation of stochastic differential equations

There are numerous numerical methods to approximate the numerical solution of stochastic differ-
ential equations of the form eq. (A.2).

Higham (2001) gives an introduction to numeric simulation methods for stochastic differential
equations, such as the Euler-Maruyama and Milstein’s method. These two methods are equivalent
when the noise is additive; when the function b in eq. (A.2) is a function of t only. As most of our
simulations only have additive noise, we use the Euler-Maruyama method as the primary method
for simulating the solution to our stochastic differential equations. We give an overview of the
Euler-Maruyama method for simulating the numerical solution of a stochastic differential equation
of the form given in eq. (A.2) over the time interval [0, T ], where T > 0 is assumed to be finite.

A.1.4 Euler-Maruyama method

We discretise the time interval [0, T ] into equally spaced subintervals [t0, t1, . . . , tN ], where t0 = 0,
tN = T and the width of a subinterval tn− tn−1 is equal to ∆t > 0. We approximate the continuous
process Xt by their discretised versions, denoted X̌t:

X̌tn+1 = X̌tn + a(tn, X̌tn)∆t+ b(tn, X̌tn)∆W̌tn ,

where ∆W̌ ∼ N (0,∆t) are discretised Brownian increments that are normally distributed with
zero mean and variance ∆t.

A.1.5 SDETools

In this thesis, we make extensive use of the MATLAB toolbox SDETools to simulate the trajectories
of our stochastic processes, developed by Horchler (2023). This package has a fast implementa-
tion of the Euler-Maruyama method, with options for including common and multiplicative noise.
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We primarily use the function sde_euler to simulate the numerical solution for our stochastic
differential equations, and sdeplot to plot the time series output of our numerical solution.

A.2 Graph theory
We give a brief introduction to the basics of network theory. We define networks as graphs, where
the nodes (or vertices) of the graph represent individual banks, and a line (or edge) connecting two
nodes represent a link between two banks. Throughout this thesis, we assume that for any two
nodes, we have no more than one edge connecting them.

Graphs may be directed or undirected. In a directed graph, the edges have a direction, whereas
in an undirected graph, the edges do not have a direction. Furthermore, graphs may be weighted
or unweighted. In a weighted graph, each edge has a weight associated with it, whereas in an
unweighted graph, each edge has a weight of one.

In this thesis, we focus only on undirected, unweighted graphs. The interpretation of an edge
between two banks represents an interaction between the two banks. Banks that interact with each
other influence the reserve levels of each other through their borrowing or lending on the interbank
market. We assume that the influence of bank i on bank j is symmetric, so the graph is undirected.
The economic interpretation of this is if bank i lends to bank j, then bank j borrows from bank i.

We can represent a graph as an adjacency matrix, A, where the i-th row and j-th column of A is
equal to 1 if there is an edge from node i to node j, and 0 otherwise. For an undirected graph, the
adjacency matrix is symmetric. An example of a random undirected graph and its corresponding
adjacency matrix is given below. The rows of the adjacency matrix correspond to the labels of the
nodes in the graph.

1

2

3 4

5

Figure A.1: An undirected graph

A =


0 0 1 0 0
0 0 1 1 0
1 1 0 0 1
0 1 0 0 1
0 0 1 1 0


Figure A.2: Adjacency matrix for the graph

A.3 Neural networks

A.3.1 Feedforward neural network

In this thesis, we use deep feedforward neural networks to approximate banks’ optimal controls
in the interbank game given in chapter 5, as well as in chapter 6 where we solve the inverse
problem of inferring the network topology given the observed dynamics of the banks. In both
problems, the feedforward neural network is used to learn some function that maps the input to
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the output. We use feedforward neural networks because they work well in practice, particularly
in approximating high-dimensional functions where traditional grid-based methods suffer from the
curse of dimensionality. Feedforward neural networks also have the theoretical property of being
universal function approximators. This comes from the universal approximation theorem for neural
networks, proved in Hornik et al. (1989), which states that a multilayer feedforward neural network
with at least one hidden layer can approximate any Borel measurable function to a desired degree
of accuracy, provided that sufficiently many hidden units are available.

We give a brief overview of these networks, although the reader is referred to Goodfellow et al.
(2016) for a more comprehensive overview of deep learning.
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Figure A.3: A feedforward neural network with an input layer, two fully-connected hidden layers
with five neurons per hidden layer, and an output layer. In a feedforward neural network, the
information flow is unidirectional, which means that information flows from the input layer to the
output layer without any feedback connections. Image adapted from Neutelings (2023).

A.3.2 Definition

Each layer of the neural network is a function φ : Rd1 → Rd2 defined element-wise for i = {1, . . . , d2}
by φ(x)i = σ

(
bi +

∑d1
j=1wi,jxj

)
, where w ∈ Rd2×d1 and b ∈ Rd2 are the trainable parameters for

the neural network, called the weights and biases, respectively. σ is an activation function that
transforms the summed weighted inputs.
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Figure A.4: An example of how the first hidden layer is computed as an activation function applied
to the weighted sum of the inputs. Image adapted from Neutelings (2023).

A feedforward neural network is then defined by

mθ = φl ◦ φl−1 ◦ · · · ◦ φ0,

where ◦ denotes the composition of functions, l is the number of layers and θ = (b0,w0, . . . , bl,wl)
are the parameters of the neural network.

A.3.3 Activation functions

In this thesis, we rely mainly on the rectified linear unit (ReLU) activation function for the hidden
layers. The ReLU function is defined as

ReLU(x) = max(0, x).

The advantage of using ReLU is that it is computationally fast. In particular, it is fast to train
the neural network using backpropagation as many gradients are 0. The ReLU activation function
also works well empirically and it often the default activation function used.

In this thesis, we also used the sigmoid activation function in the output layer, which is defined as

sigmoid(x) = 1

1 + exp(−x)
.

The range of the sigmoid activation function is [0, 1], which makes it a useful activation function
for computing the weights of the adjacency matrix A.

53



A.3.4 Backpropagation and stochastic gradient descent

We refer to the process of updating the parameters of the neural network to minimise a loss function
as training the neural network. This is done by backpropagation, which describes the process where
the input is passed through the network’s hidden layers and the output layer. In the output layer,
the derivative of the loss function is computed with respect to the weights of the neural network.
These weights are then updated using a gradient descent algorithm in order to minimise the loss
function. This process is repeated for a fixed number of iterations, often stopping when the loss
function has converged.

Algorithm 3: Training algorithm using gradient descent
Input: θ0 : An initial parameterisation of the neural network
Niter : Number of iterations
(βi)i=0,...,Niter−1 : Learning rates

1 for i = 1 to Niter do
2 Compute ∇θiJ , the gradients of the loss with respect to the parameters, θi
3 Update θi+1 = θi − βi∇θiJ

4 return θNiter

There are various gradient descent methods that are used in practice. Batch gradient descent
computes the gradient using the whole training data before updating the parameters. Stochastic
gradient descent (SGD) computes the gradient for a single sample of the training data and updates
the parameters. Mini-batch stochastic gradient partitions the training data into mini-batches, and
computes the gradient for each mini-batch. We refer to an epoch as one complete pass through of
the training data.

Stochastic gradient descent is a popular algorithm as it converges faster than batch gradient descent.
This is because the gradient of a single sample is easier to calculate than the gradient of the training
data. However, the convergence path is noisier due to the randomness of the impact of a single
sample on the loss. Mini-batch stochastic gradient descent provides a middle-ground and is the
preferred training method used in this thesis.

A.3.5 Initialisation of weights

The initialisation of the weights of the neural network can have a large impact on the convergence
of the network. Unless otherwise specified, we use the Glorot uniform initialiser as described in
Glorot and Bengio (2010), a popular initialisation method which helps control the stability of the
gradients during the initial training steps.

A.3.6 Adam optimiser

In practice, the choice of the learning rate plays an important role in the convergence of the
parameters of the neural network. The Adam optimisation algorithm is an extension of stochastic
gradient descent introduced by Kingma and Ba (2015) that “computes individual adaptive learning
rates for different parameters from estimates of first and second moments of the gradients. The
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name Adam is derived from adaptive moment estimation”. Adam works well in practice and is the
preferred optimisation method used in this thesis.

A.3.7 TensorFlow

We implement all our neural network algorithms in TensorFlow, a framework developed by Abadi
et al. (2015) for training deep neural networks. We use TensorFlow version 2.10 and Keras, a Python
interface for TensorFlow developed by Chollet et al. (2015). TensorFlow allows us to easily develop
low-level algorithms for training our neural networks. In particular, the gradients of the loss func-
tion with respect to the weights are automatically computed, which makes the implementation of
training the neural network straightforward. We also take advantage of TensorFlow’s XLA (Accel-
erated Linear Algebra) compiler, which results in large improvements in the speed of training. The
Python codes that I developed for solving the interbank game and the network inference problem
using TensorFlow are available on my GitHub at https://github.com/HarryLi98/SDE-DeepRL.
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Appendix B

Additional material

B.1 Interbank model

B.1.1 Common noise

To see that the ρ describes the noise correlation between the banks, we can rewrite the dynamics
in eq. (2.3) in matrix form:

dXt = a(X̄t −Xt) dt+Σ dWt,

where Xt = (X1
t , . . . , X

N
t )T ∈ RN , Wt = (W 0

t ,W
1
t , . . . ,W

N
t )T ∈ RN+1 and

Σ =


σρ σ

√
1− ρ2 0 · · · 0

σρ 0 σ
√

1− ρ2 · · · 0
...

...
... . . . ...

σρ 0 0 · · · σ
√

1− ρ2

 ∈ RN×(N+1).

The covariance matrix of the system is given by:

ΣΣT = σ2


1 ρ2 · · · ρ2

ρ2 1 · · · ρ2

...
... . . . ...

ρ2 ρ2 · · · 1

 .

Since diag(ΣΣT) = 1, the correlation matrix coincides with the covariance matrix.

B.2 Interbank game

B.2.1 Analytical Solution

Carmona et al. (2015) derive the analytical solution of both the open-loop and closed-loop Nash
equilibrium of the Linear-Quadratic interbank game. The details of the derivation are omitted

56



here, and we simply present the analytical solution of the closed-loop Nash equilibrium, which is
given by:

αi
t =

[
q +

(
1− 1

N

)
ηt

] (
X̄t −Xi

t

)
,

and the forward dynamics by:

dXi
t =

[
a+ q +

(
1− 1

N

)
ηt

] (
X̄t −Xi

t

)
dt+ σ

(√
1− ρ2 dW i

t + ρ dW 0
t

)
with

ηt =
−
(
ε− q2

) (
e
(
δ+−δ−

)
(T−t) − 1

)
− c

(
δ+e

(
δ+−δ−

)
(T−t) − δ−

)
(
δ−e(δ+−δ−)(T−t) − δ+

)
− c

(
1− 1

N2

) (
e(δ+−δ−)(T−t) − 1

) ,

where we used the notation
δ± = −(a+ q)±

√
R,

with
R := (a+ q)2 +

(
1− 1

N2

)(
ε− q2

)
> 0.

B.3 Network inference using neural networks

B.3.1 OLS Estimator

We can estimate the network topology using the ordinary least squares (OLS) estimator. Given L
observations for the time series data for bank i, we obtain L equations with N unknowns, given in
matrix form by

Xi = GiAi + εi,

where Xi ∈ RL are the L observations for bank i, Gi ∈ RL×N is the matrix of observations for
the N banks given by Gi = X − Xi, where X = (X1, . . . ,XN ) ∈ RL×N , Ai ∈ RN is the vector of
unknowns that correspond to the ith row of the adjacency matrix A, and εi ∈ RL is the error term.
We can estimate Ai using the OLS estimator:

Âi = (GT
i Gi)

−1GT
i Xi,

provided that GT
i Gi is invertible. If L < N , then GT

i Gi is not invertible, and we cannot use the
OLS estimator.
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B.3.2 Adjacency matrices

A =



1 0 1 0 1 1 1 0 0
0 1 0 1 0 1 0 0 0
1 0 1 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 1 0 1
1 1 0 0 0 1 0 1 1
1 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 1
0 0 1 0 1 1 0 1 1


Figure B.1: The randomly generated adjacency matrix that represents the true network. A is
symmetric, and the diagonal elements are one.

Â =



1 0.38 0.15 0.44 0.43 0.61 0.66 0.1 0.7
0.38 1 0.09 0.66 0 0.06 0.51 0.09 0.22
0.15 0.09 1 0.6 0.03 0.23 0.16 0 0.43
0.44 0.66 0.6 1 0 0.03 0.02 0 0.18
0.43 0 0.03 0 1 0.02 0.79 0.2 0.38
0.61 0.06 0.23 0.03 0.02 1 0.19 0 0.04
0.66 0.51 0.16 0.02 0.79 0.19 1 0.01 0.53
0.1 0.09 0 0 0.2 0 0.01 1 0.56
0.7 0.22 0.43 0.18 0.38 0.04 0.53 0.56 1


Figure B.2: The estimated network for the model with σ = 0, rounded to two decimal places.
While the estimated network is different from the true network, it still produces a time series that
is consistent with the observed time series. Symmetries in the data may mean that there is more
than one solution to the problem of inferring the network.

Â =



1 0.02 0.23 0.35 0.58 0.02 0.76 0.17 0.79
0.02 1 0.9 0.22 0.03 0.48 0.29 0 0.26
0.23 0.9 1 0.67 0.01 0.6 0.14 0.01 0.24
0.35 0.22 0.67 1 0 0.18 0.47 0.09 0.55
0.58 0.03 0.01 0 1 0.89 0.47 0.09 0.55
0.02 0.48 0.6 0.18 0.89 1 0.25 0 0.29
0.76 0.29 0.14 0.47 0.47 0.25 1 0.02 0.04
0.17 0 0.01 0.09 0.09 0 0.02 1 0.03
0.79 0.26 0.24 0.55 0.55 0.29 0.04 0.03 1


Figure B.3: The estimated network for the model with σ = 0.1, rounded to two decimal places.
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