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Introduction

Maintaining financial stability is an important objective of any central bank as

failures in the financial system can have a very negative impact on the economy

and on the welfare of individuals. Since the great financial crisis, central banks

have put increasing focus on understanding and reducing systemic risk in the

financial system. We use interacting particle models to study systemic risk in

the financial system. In particular, we are interested in studying the effect of

different network structures between banks on systemic risk.

Simple model of systemic risk

We start with a simple model of mean-field interacting diffusions to model sys-

temic risk as described in [2]. Let X i
t denote the log-monetary reserve of agent

i at time t. For i = 1, . . . , N , the dynamics of each agent are given by:

dX i
t = θi

(
X̄t − X i

t

)
dt + σi dW i

t

with initial condition X i
0 = 0. W i

t are independent, standard Brownian motions.

The dynamics imply that agent i is attracted to the mean level X̄t := 1
N

∑N
i=1 X i

t

at time t. The parameters θi represent the strength of mean-field reversion and

σi the strength of noise for agent i.

For a fixed, exogenous default level η < 0, a systemic event occurs when the

average level of Bank reserves falls below the default level. That is, X̄t ≤ η.

Trajectory of X̄t and loss distribution for N=10

Figure 1. The left graph shows the trajectory of banks’ reserves. The red line indicates the

default level η = −0.7. The green line is the trajectory of the empirical mean, X̄t. The right graph

shows the estimated ’loss distribution’, which is the probability of the number of banks

defaulting within the time horizon [0, 1].

Model implications

In this model, the dynamics of all Banks are interconnected. [2] find that:

Large θ enhances ‘flocking’ behaviour, where trajectories follow a similar path.

Larger σ increases the volatility of the system.

In the cast of different θi and σi, the system is more stable when the number

of intermediate size agents is large enough.

Common noise

We extend the model from [2] to include common noise, in addition to idiosyn-

cratic noise. Economically, common noise is equivalent to aggregate uncer-

tainty in the financial system. The dynamics of each agent are given by:

dX i
t = θi

(
X̄t − X i

t

)
dt + σi dW̃ i

t ,

where dW̃ i
t := ρ dW 0

t +
√

1 − ρ2 dW i
t , with W i the individual noises and W 0 the

common noise and |ρ| ≤ 1.

Implication of common noise

Figure 2. Trajectory of X̄t and loss distribution with common noise, ρ = 0.9.

Common noise enhances ‘flocking’ behaviour. Including common noise signifi-

cantly increases the probability of a tail-risk event occurring.

Interbank networks

We extend the model from [2] to incorporate networks on Bank interactions. We

express the network as an undirected,weighted adjacencymatrix,A, withvalues

ai,j ∈ R+ for i, j ∈ {1, . . . , N}.

For i = 1, . . . , N , the dynamics of each agent are given by:

dX i
t = 1

N

N∑
j=1

ai,j

(
Xj

t − X i
t

)
dt + σi dW i

t

Examples of networks

Star-network

In a star-network, some banks are ‘central’, (fully connected), while other

banks are sparsely connected, being connected only to the ’central’ banks.

Random network

Thegraphof a randomnetwork is constructedbyconnecting nodes randomly.

The adjacency matrix we consider is symmetric, with ones on the leading di-

agonal, and other edges being connected with probability p.

Homophilous and heterophilous networks

In a homophilous / heterophilous network, the strength of interaction of two

banks is a decreasing / increasing function of the distance in the level of their

bank reserves.

Mean-field games

We now add a central bank as a provider of liquidity in the interbank market.

[1] develop a game that models interbank borrowing and lending, where each

bank controls its rate of borrowing/lending to a central bank. For i = 1, . . . , N ,

the dynamics of each agent are given by:

dX i
t =

[
θ
(
X̄t − X i

t

)
+ αi

t

]
dt + σ dW̃ i

t ,

where the control αi
t is chosen to minimise the running quadratic cost f i and

terminal cost gi:

J i(α) := E

[∫ T

0
f i

(
Xt, αi

t

)
dt + gi(XT )

]
,

with f i
(
Xt, αi

t

)
= 1

2
(
αi

t

)2 − qαi
t

(
X̄t − X i

t

)
+ ε

2
(
X̄t − X i

t

)2
and gi(XT ) = c

2
(
X̄T − X i

T

)2

[1] find that introducing the possibility to borrow and lend from a central bank

enhances the stability of the financial system.

Approximation of Nash Equilibriumwith Deep Learning

The interbank game from [1] falls into the class ofN-player Linear-Quadratic (LQ)

games, which has an analytical expression for the Nash Equilibrium.

We develop a deep neural network-based algorithm to approximate the Nash

Equilibrium in order to solve the model extended with network structures.

Figure 3. A feedforward neural network with 1 hidden layer approximates the analytical solution

of the linear-quadratic game in [1] with N = 22. The approximation of the state Xt is very good,

while the approximation of the control αt is also quite good.

Conclusion and policy implications

Weanalysed interacting particlemodels of interbank lending tomodel systemic

risk in the financial system. We find that the interbank network structure can

have a meaningful impact on the stability of the system. In particular, having

many densely-connected intermediate size agents can improve the stability of

the financial system. This has policy implications as the central bankmaybe able

to impose regulations to avoid large banks dominating the interbank market.
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